Топливо из водорослей по составу больше похоже на зелёнку, чем на нефть

Топливо из водорослей по составу больше похоже на зелёнку, чем на нефть

Исследователи определили состав биотоплива, полученного из микроводорослей Spirulina platensis, с помощью масс-спектрометрии высокого разрешения. Учёные изучили две фракции биотоплива, которые получаются после того, как массу из водорослей обработают специальным методом. Кроме того, они показали, что биотопливо по составу сильно отличается от ископаемой нефтью, зато есть что-то общее с зелёнкой. Исследование опубликовано в журнале European Journal of Mass Spectrometry.

Работа была сделана группой учёных из Сколтеха, Объединенного института высоких температур РАН, Института энергетических проблем химической физики им. В.Л. Тальрозе РАН, Института биохимической физики им. Эмануэля РАН, МГУ и Московского физико-технического института.

Водоросли как спасение экологии

Биотопливо как альтернативный источник энергии представляет особенный интерес для изучения, ведь оно помогло бы решить такие проблемы, как истощение запасов нефти и глобальное потепление. В отличие от нефти, биотопливо производится из возобновляемых природных ресурсов, а при его сжигании выделяется столько же парниковых газов сколько поглощается при росте. Бразилия, например, уже обеспечивает с помощью биотоплива 40% своих потребностей. В качестве сырья для биотоплива используют сельскохозяйственные культуры и другие растения. Однако в этом случае приходится занимать плодородную землю, которая могла бы вместо этого кормить людей. Перспективным сырьём для биотоплива являются морские микроводоросли, которые не требуют ни чистой воды, ни земли. Водоросли активно поглощают углекислый газ, а значит, их использование действительно полезно для уменьшения парникового эффекта. Топливо из микроводорослей называют биотопливом третьего поколения, и в настоящее время ведутся активные разработки по его производству.

Рецепт биотоплива

Если мы узнаем состав биотоплива, мы сможем усовершенствовать процесс его производства. Первоначальные технологии получения горючего из водорослевой массы были энергетически невыгодными, так как много энергии затрачивалось на высушивание водорослей, в которых содержится большое количество воды. Для коммерческого применения нужен был новый, более эффективный метод. И такой метод придумали — это так называемое гидротермальное сжижение: мокрую биомассу нагревают до температуры выше 300℃, сжимают давлением в 200 атмосфер и на выходе получают топливо. Примерно тот же принцип действует в природе, когда под воздействием больших температур и высокого давления в недрах Земли образуется нефть, только в реакторе это происходит быстрее. В результате получается две фракции: жидкое биотопливо и густая масса, которая остаётся в реакторе. Это смеси, состоят из тысяч индивидуальных компонентов, и для определения их состава наилучшим образом подходит масс-спектрометрия.

Масс-спектрометрия

Масс-спектрометрия — метод исследования, с помощью которого можно определить состав вещества. Метод основан на том, что в постоянном магнитном поле или переменном электрическом заряженные молекулы разделяются в пространствев соответствии с отношением их массы к заряду m/z. На выходе получается масс-спектр — график с пиками интенсивности, где каждому пику соответствует своё значение m/z.

Учёные исследовали с помощью масс-спектрометрии биотопливо, полученное из водорослей Spirulina platensis. В процессе гидротермального сжижения все вещества с температурой кипения менее 300 градусов выходят из реактора в виде газа и охлаждаются в специальной ёмкости. Таким образом получается жидкая фракция, а в реакторе остаётся твёрдая фракция. Масс-спектрометрический анализ показал, что обе фракции содержат больше всего веществ, у которых в составе есть N и N2, но компоненты твёрдой фракции более разнообразны и по свойствам отличаются от компонентов жидкой фракции. Найденные в биотопливе вещества не имели ничего общего с веществами, которые содержатся в обычной сырой нефти, хотя и являются горючими. Масс-спектрометрия позволяет узнать только молекулярные формулы веществ (например, C18H35N2). Чтобы получить какую-нибудь информацию о структуре молекул, исследователи применили метод замены водорода на дейтерий.

Замена водорода на дейтерий

Когда водород заменяется на дейтерий, масса иона* становится больше и пик в спектре смещается. По тому, сместился пик или нет, учёные определяют, в каком месте в молекуле стоял водород. Однако не любой водород отдаст своё место дейтерию, точнее, не любое место водород сможет освободить.

*Перед тем, как запустить молекулы в масс-анализатор, их нужно зарядить, иначе электромагнитное поле на них не подействует. У обычных молекул заряд z=0, в них число протонов равно числу электронов. А если, например, к молекуле присоединить протон (частица с зарядом +1), то она станет ионом с зарядом z=1. Процесс превращения молекул в ионы называется ионизацией.

Перед запуском в масс-анализатор молекулы образца подвергают ионизации. В данном случае к нейтральным соединениям добавлялись протоны, и они превращались в положительные ионы. Присоединённый протон легко заменяется на дейтон, но оказалось, что в некоторых компонентах биотоплива замены не происходит. Учёные это поняли по интенсивности смещённого пика, который получается при замене. У обычной нефти смещённый пик имел такую же интенсивность, как несмещённый, а значит, замена произошла полностью. В других компонентах, интенсивность смещённого пика была меньше. Это значит, что под одним пиком кроется несколько соединений и не во всех из них есть присоединённый водород, вместо которого мог бы встать дейтерий. В некоторых аспектах, (механизмы ионизации), молекулы, найденные в полученных биотопливах, похожи по своим свойствам на молекулы красителей, таких как, например, бриллиантовый зеленый (всем известная зеленка).

Комментирует Евгений Николаев, член-корреспондент РАН, профессор Сколтеха, научный руководитель Лаборатории ионной и молекулярной физики МФТИ: «Исследование продуктов гидротермального сжижения микроводорослей с помощью масс-спектрометрии имеет важное значение для повышения эффективности производства биотоплива. Дальнейшая работа должна быть сконцентрирована на использовании сортов водорослей с максимально высоким содержанием липидов и создании таких сортов с использованием генетической модификации. Так мы сможем выбрать из них самое эффективное сырьё для биотоплива».

Иллюстрация к статье: Яндекс.Картинки

Читайте также

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>