Ученые обнаружили существование нового типа квазичастиц

Ученые обнаружили существование нового типа квазичастиц

Российские ученые экспериментально доказали существование нового типа квазичастиц – ранее неизвестных возбуждений связанных пар фотонов на цепочках кубитов. Открытие ученых может стать шагом на пути к созданию устойчивых к ошибкам квантовых вычислительных систем. Работа была опубликована в журнале Physical Review B.

На сегодняшний день сверхпроводящие кубиты являются одним из популярных и перспективных типов кубитов. Кубиты чаще всего используют для создания квантовых вычислительных устройств. При этом основными проблемами универсальных квантовых компьютеров являются декогеренция – потеря кубитами квантового состояния, которая приводит к ошибкам в ходе вычислений, и организация управляемой работы очень большого числа кубитов.

Квантовые симуляторы на основе метаматериалов – это альтернативный подход к квантовым вычислениям. В отличие от универсальных квантовых компьютеров, им не требуется большое количество управляющей электроники. Идея этого подхода заключается в том, чтобы создать из кубитов искусственную материю, физика которой будет
подчиняться тем же уравнениям, что и у какого-то реального вещества. Можно, наоборот, запрограммировать симулятор таким образом, чтобы воплотить материю со свойствами, которые в природе до сих пор обнаружить не удавалось.

Системы из сверхпроводниковых кубитов в общем случае описываются моделью Бозе-Хаббарда. При этом из-за сильной квантовой нелинейности в данной модели могут возникать так называемые дублоны – т.е. связанное состояние двух фотонов. И хотя топологические свойства дублонов уже подробно описаны теоретически, их экспериментальные подтверждения до сих пор отсутствовали.

С целью изучения важных топологических свойств дублонов группа ученых из НИТУ «МИСиС», Российского квантового центра, Университета ИТМО, МГТУ им. Н.Э. Баумана, ВНИАА и Физико-технического института имени А.Ф. Иоффе РАН построила квантовый симулятор на основе сверхпроводниковых кубитов. Квантовые симуляторы предназначены для решения узкоспециализированных квантовых задач, связанных, например, с моделированием сложных систем с большим числом частиц.

«Измеряя свойства кубитов, мы можем делать выводы о более широком классе физических систем, описываемых теми же самыми уравнениями. А если мы можем управляемым образом менять параметры этих уравнений, то такое устройство можно считать «специализированным симулятором». Конечно, программируемость у него не такая, как у универсального квантового компьютера, но его масштабирование требует значительно меньшего количества ресурсов», — поясняет основной автор исследования Илья Беседин, младший научный сотрудник лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС».

Учеными была реализована цепочка из сверхпроводниковых кубитов-трансмонов с чередующейся связью. Благодаря чередованию сильной и слабой связи в этой системе возникают две зоны и краевое состояние. Такое состояние относится к топологическим. Более того, эксперимент показал, что дублоны тоже формируют краевое состояние, но не со стороны слабой связи, а со стороны сильной связи.

«Нам удалось увидеть, как дублоны формируют эти зоны, и даже удалось обнаружить, как на верхнем краю дублонной зоны по мере того, как мы увеличивали длину цепочки, начинает возникать краевое дублонное состояние», — отмечает Илья Беседин.

Таким образом, российским ученым впервые удалось продемонстрировать, что на цепочках кубитов может возникать новый тип квазичастиц — дублонные топологические возбуждения.

«Исследования сверхпроводниковых кубитов и квантовых схем сейчас ведутся во многих странах мира, и конкуренция в этой области растет. Эта работа с использованием 11 кубитов убедительно демонстрирует высокий научный уровень, достигнутый в России в области квантовых вычислений на основе сверхпроводников. Сейчас это особенно актуально и открывает очень хорошие перспективы для развития квантовых вычислений в России», — говорит заведующий лабораторией «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и руководитель группы в Российском квантовом центре, профессор, доктор физ.-мат. наук Алексей Устинов.

Иллюстрация к статье: Яндекс.Картинки

Читайте также

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>