Физики из МФТИ и компании Terra Quantum вместе с коллегами из США и Швейцарии разработали алгоритм, который позволяет проводить высокоточные измерения с помощью искусственных многоуровневых атомов. Такой квантовый сенсор позволяет получить высокую точность при измерении магнитных полей. Он также найдет применение при исследовании мозга и в изучении дальнего космоса. Статья вышла в журнале Physical Review Research.
Квантовые технологии являются одними из самых многообещающих технологий будущего. Научное сообщество уже научилось строить квантовые машины, которые превосходят по вычислительной мощности классические суперкомпьютеры. Одна из задач, для решения которой оказывается выгодно использовать квантовые ресурсы, — это повышение точности измерений. Важные открытия нередко делаются благодаря новым высокоточным приборам: телескопы помогают астрономам глубже заглянуть в космос, биологи все точнее видят микромир с помощью новых микроскопов, а археологам нужны масс-спектрометры для определения возраста ископаемых.
В основе процедуры классических измерений лежат фундаментальные принципы, которые не позволяют преодолеть квадратичное уменьшение ошибки измерения с ростом времени измерения. Другими словами, чтобы удвоить точность измерений, нужно проводить их в четыре раза дольше. В то же время квантовый подход позволяет удвоить точность измерений, проводя их всего в два раза дольше. Может показаться, что это несущественно, но, если необходимо повысить точность измерения в тысячу раз, это значит, что классический эксперимент будет идти уже в миллион раз дольше, чем квантовый.
Коллектив исследователей из МФТИ и швейцарской компании Terra Quantum разработал новый алгоритм измерения магнитных полей с помощью многоуровневого сверхпроводящего атома.
Михаил Перельштейн, научный сотрудник лаборатории физики квантовых информационных технологий МФТИ, аспирант Физтех-школы физики и исследований им. Ландау, говорит: «Ранее наша группа показала, что чувствительность искусственных атомов можно увеличить, если рассмотреть не двухуровневую систему — кубит, а многоуровневую. Например, сверхпроводящая цепь, которая активно используется в квантовых вычислениях в режиме кубита, может легко использоваться в режиме трехуровневой системы. В этой работе мы впервые предложили алгоритм для измерения магнитных полей с помощью таких многоуровневых систем».
Никита Кирсанов, еще один из авторов работы, научный сотрудник лаборатории физики квантовых информационных технологий МФТИ и также аспирант Физтех-школы физики и исследований им. Ландау, добавляет: «Мы оптимизировали время взаимодействия многоуровневого атома и магнитного поля на каждом шаге алгоритма. Оказалось, что линейное увеличение времени взаимодействия на каждом шаге является оптимальной процедурой. В результате алгоритм так и назвали: — Linear Ascending Metrological Algorithm, или просто LAMA».
Решение оказалось удачным. Сравнение с другими квантовыми алгоритмами показало существенное превосходство метода.
Возможных приложений у квантовых магнитометров очень много. Точность, а значит, и скорость измерений особенно важны при работе с чувствительными образцами и живыми тканями. Например, в процессе исследования мозга в кровь пациенту вводятся радиоактивные изотопы, и чем точнее датчик, тем ниже необходимая доза. Такой квантовый магнитометр можно установить и на спутник, он сможет собирать информацию об астрономических явлениях на расстояниях, которые не под силу классическим приборам. Более того, система из нескольких квантовых магнитометров может работать как сверхчувствительный пространственный детектор. Такие приборы нужны, чтобы делать томографию пациентам, анализировать месторождения руды, изучать структуру биомолекул и неорганических материалов.
Оставить комментарий